Pumps and pressure in irrigation systems

Gerry Spinelli Production Horticulture Advisor - UCCE San Diego

SD Farm and Nursery Expo 11/4/2021

Flowrate per acre

Avocado spaced 18' x 22' 110 trees per acre Two 1 gph emitters per tree So each acre takes 220 gph or 3.6 gpm/acre

20JH

1/2" 13mm Full Circle, Brass Impact Sprinkler

- Durable brass die-cast arm
- Stainless steel springs and fulcrum pin
- Corrosion and grit resistant

Features

Straight Bore Nozzle (SBN-1) Performance*								
				NOZZL	E SIZ	E (Strea	m Heig	pht:6 ft.)
	7/	64″	1,	/8″	9/	64″	5/	32″
psi @ Nozzle	Rad. (ft.)	Flow (gpm)	Rad. (ft.)	Flow (gpm)	Rad. (ft.)	Flow (gpm)	Rad. (ft.)	Flow (gpm)
35	38	2.05	38	2.68	39	3.39	39	4.19
40	38	2.19	39	2.86	40	3.62	39	4.47
45	39	2.32	39	3.03	40	3.84	40	4.73
50	- 39	2.45	- 39	3.20	40	4.05	40	5.00
55	39	2.57	40	3.35	40	4.24	40	5.23
60	- 39	2.68	40	3.50	41	4.43	41	5.47

There are 50 sprinkler heads per acre and each puts out 3 gpm. So each acre takes 150 gpm.

You need an irrigation schedule and irrigation sets should cover the same area

Block

1

2

3

4

6

Area

0.33

0.4

0.5

0.63

0.61

0.74

Irriga	ation sets	Flowrate,		
Block	Area, acres	gpm		
1	0.9			
3	0.4			
Total	1.3	195		
5	0.63			
7	0.74			
Total	1.37	205		
6	0.61			
4	0.5			
2	0.33			
Total	1.44	216		

There are 50 sprinkler heads per acre and each puts out 3 gpm. So each acre takes 150 gpm, Or 150 gpm/acre

If you irrigate less area, the pressure will increase

Irriga	tion sets	
Block	Area	gpm
1	0.9	
Total	0.9	135
3	0.4	
4	0.5	
Total	0.9	135
6	0.61	
2	0.33	
Total	0.94	141
5	0.63	94
7	0.74	111

If you irrigate with smaller sets, the flowrate required from the pump is smaller

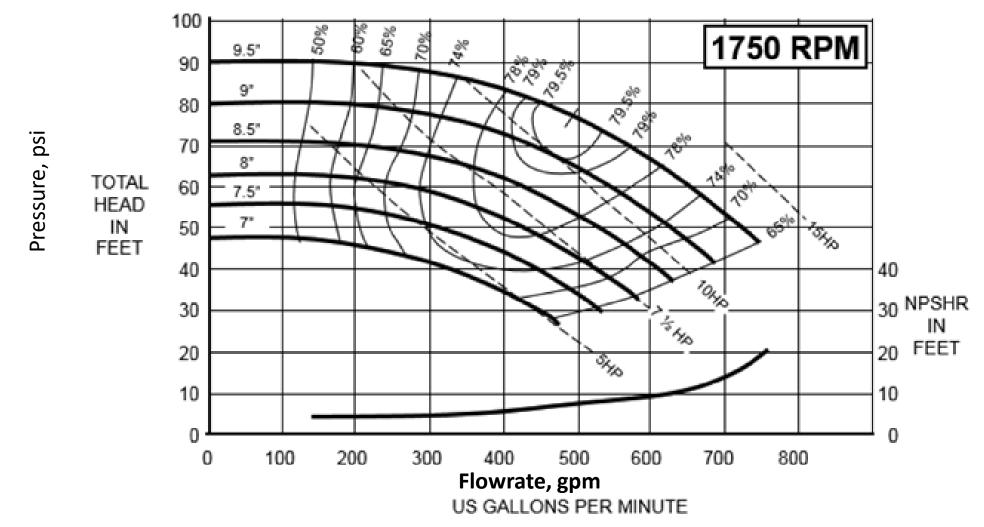
Area 0.9

0.33

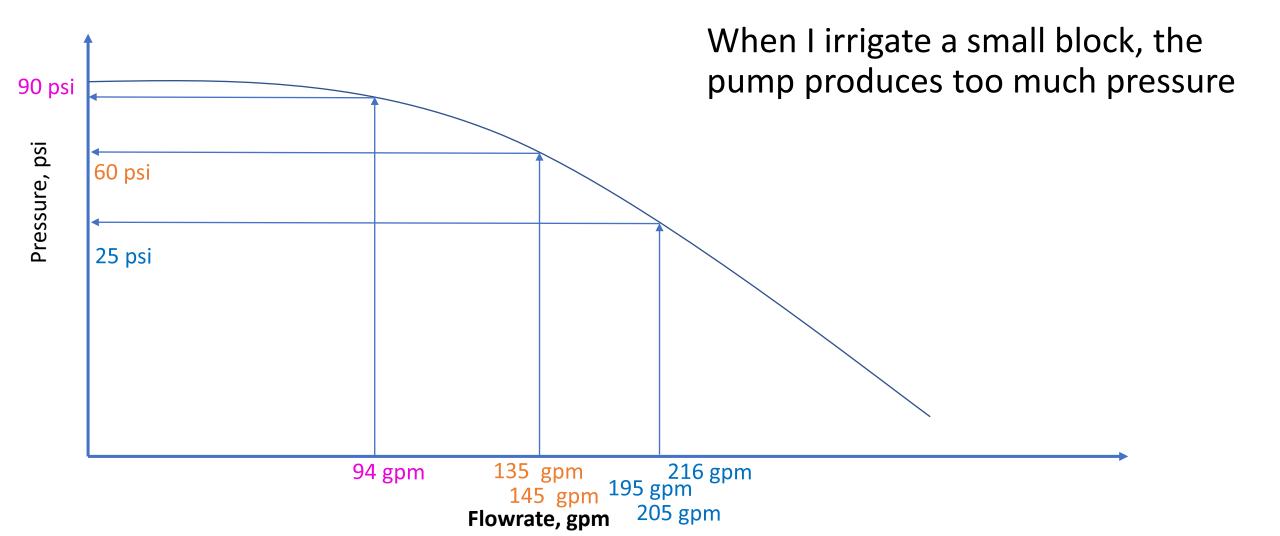
0.4 0.5 0.63

0.61

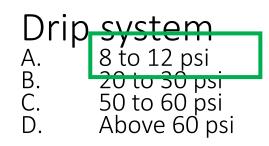
0.74


2 3

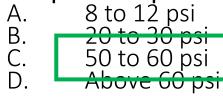
5


6

Pump performance curve

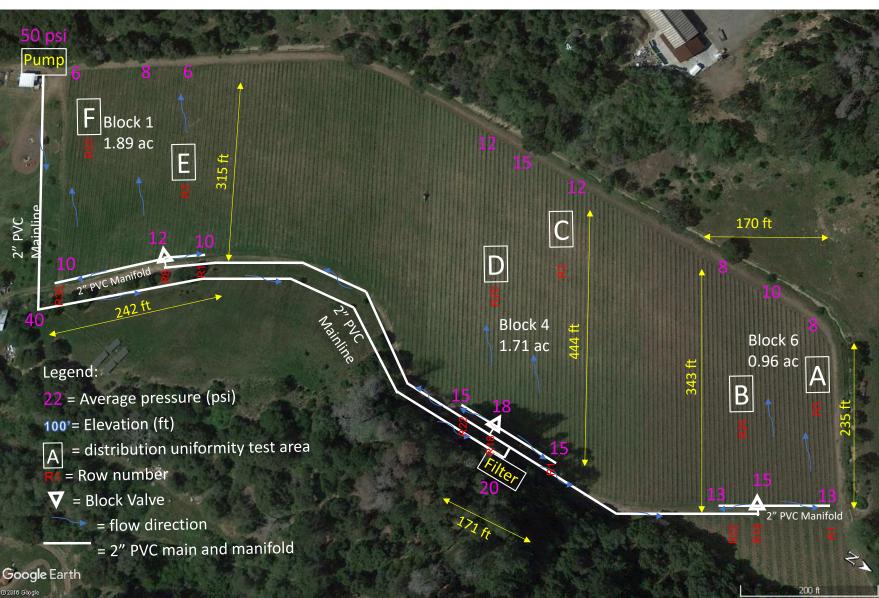

The pump can only operate at a point on this curve If you increase the flowrate, the pressure drops and vice versa

Pump performance curve


How much pressure do you need?

Micro-Sprinkler system

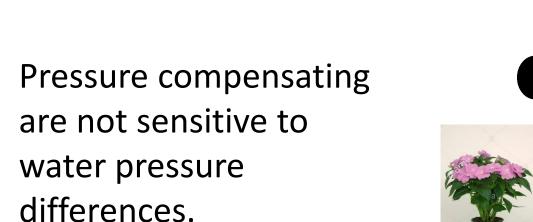
A.	
В.	20 to 30 psi
\mathbf{C}	
C.	
D.	Above 60 psi


Impact Sprinkler system A. 8 to 12 psi B. 20 to 30 psi

If water moves, the pressure drops.

Elevation: 2.31 ft = 1 psi or 1 ft = 0.43 psi

Friction: If water moves,the pressure drops.More pressure losses if:


- Longer pipe
- Smaller diameter
- Larger flowrate
- Rougher pipe surface (old iron pipes)


Pressure distribution uniformity

The flowrate is how much volume is discharged in a time. The flowrate is dependent on pressure

Nominal flowrate is rated at 10 psi

If the pressure is too high at one block:

Pressure regulators

Manually adjust valves: "throttling"

This solution works but it's a waste of energy!

Pressure regulators

Specification

PRU – Ultra High Flow

Ideal for installations requiring ultra high flows and accurate zone control.

Applications: Commercial Turf, Drip, Nursery, Agricultural Solid Set, Effluent and Industrial Mining Applications.

Fixed

Features

Literature

• The compact size makes it convenient for use in a valve box

 ${\boldsymbol \cdot}$ Corrosion resistant materials that can withstand harsh water conditions and chemicals

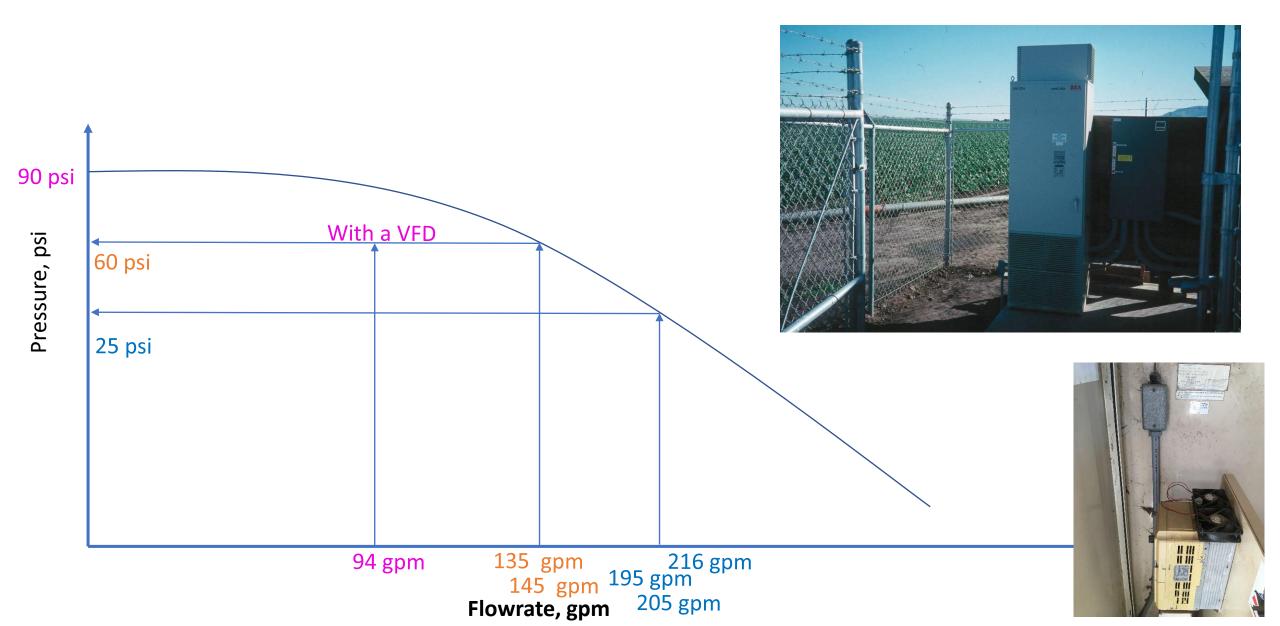
Very low hysteresis and friction loss

Large flow path resists plugging

FAQ

Model #	Flow Range	Preset Operating Pressure	Maximum Inlet Pressure	Inlet Sizes	Outlet Sizes
DBUI	20 - 100 gpm	10 psi	90 psi	2" F NPT,	2" F NPT,
	(1543 - 22713 L/hr)	(0.69 bar)	(6.20 bar)	2" F BSPT	2" F BSPT
PRU-15	20, 100 gpm	15 psi	95 psi	2" F NPT,	2" F NPT,
	(4543, 22713 L/hr)	(1.03 bar)	(6.55 bar)	2" F BSPT	2" F BSPT
PRII-20	20 - 100 gpm	20 psi	100 psi	2" F NPT,	2" F NPT,
	(4543 - 22713 L/hr)	(1.38 bar)	(6.89 bar)	2" F BSPT	2" F BSPT
PRU-25	20 - 100 gpm	25 psi	105 psi	2" F NPT,	2" F NPT,
	(4543 - 22713 L/hr)	(1.72 bar)	(7.24 bar)	2" F BSPT	2" F BSPT
PRU-30	20 - 100 gpm	30 psi	110 psi	2" F NPT,	2" F NPT,
	(4543 - 22713 L/hr)	(2.07 bar)	(7.58 bar)	2" F BSPT	2" F BSPT
PRU-40	20 - 100 gpm	40 psi	120 psi	2" F NPT,	2" F NPT,

Adjustable ~\$600 - 1000

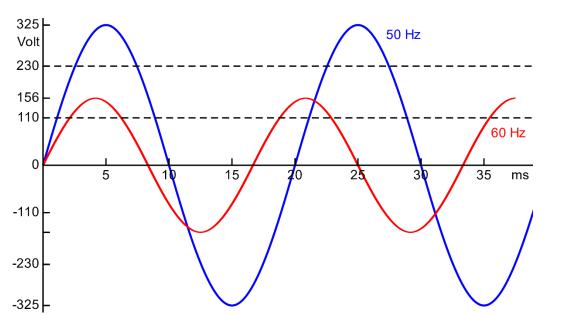


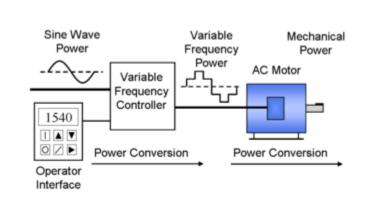
... but pressure regulators and choking a valve to burn pressure are wastes of energy.

The paradox is that we spend money for the pump to produce energy and then we burn that same energy with a pressure regulator

A Variable Frequency Drive (VFD) solves this problem

A better solution is a VFD, that allows you to select a pressure/flowrate point below the curve

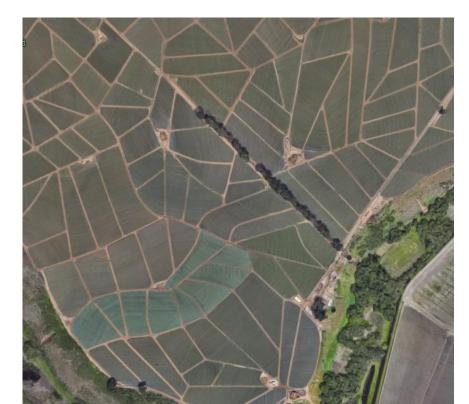


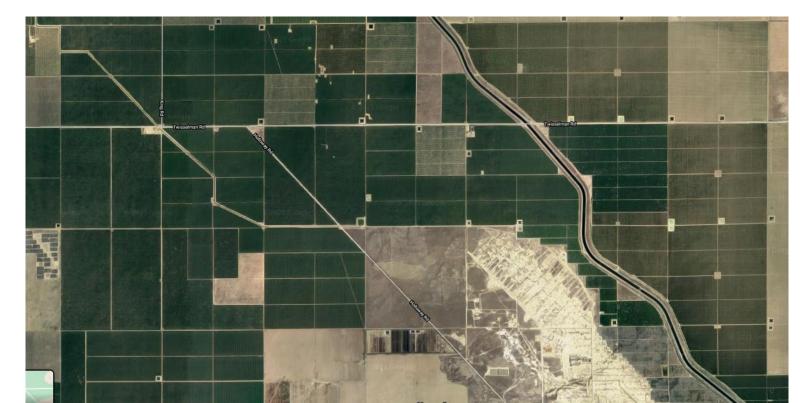

Pumps driven by electric motors can spin only at a set RPM given by the electricity frequency and motor construction (# of poles)

The result is that the pump can only operate at a point on the performance curve shown earlier

A VFD is a panel with electronics that controls the electricity that goes to your pump motor

It can change the frequency of the electricity so your pump can spin slower and operate at any point below the curve





VFDs are mostly useful when:

Irrigating odd shaped blocks or in annual cropping systems Annual production systems with rotations Using different irrigation methods Slopes - differences in elevation

To be economical the VFD needs to be operated a number of hours per year

Thank you!

Gerardo Spinelli

gspinelli@ucdavis.edu

Office 858 822 7679 Cell 530 304 3738

Please complete the evaluation!

https://surveys.ucanr.edu/survey.cfm? surveynumber=33281