Citrus Production in Florida

Acres of Citrus (Thousands)

2004: 748,555 acres
Citrus Production in Florida

Acres of Citrus (Thousands)

- 2004: 748,555 acres
- 2022: 375,302 acres
Citrus Production in Florida

2004: 748,555 acres
2022: 375,302 acres
Citrus Production in Florida

Acres of Citrus (Thousands)

- 2004: 748,555 acres
- 2022: 375,302 acres

Boxes of citrus (Millions)

1 Box = ~90 lbs oranges

2004: 748,555 acres
2022: 375,302 acres
Citrus Production in Florida

Acres of Citrus (Thousands)

- 2004: 748,555 acres
- 2022: 375,302 acres

Boxes of citrus (Millions)

- 2004: 292 Million boxes

1 Box = ~90lbs oranges
Citrus Production in Florida

Acres of Citrus (Thousands)

- 2004: 748,555 acres
- 2022: 375,302 acres

Boxes of citrus (Millions)

- 2004: 292 Million boxes
- 1 Box ≈ 90lbs oranges
Citrus Production in Florida

2004: 748,555 acres
2022: 375,302 acres

1 Box =~ 90 lbs oranges

2004: 292 Million boxes
Citrus Production in Florida

Acres of Citrus (Thousands)

- 2004: 748,555 acres
- 2022: 375,302 acres

Boxes of citrus (Millions)

- 2004: 292 Million boxes
- 2022: 45.1 Million boxes

1 Box = ~90lbs oranges
How has citrus production responded?

Citrus Production in Florida

Acres of Citrus (Thousands)

2004: 748,555 acres
2022: 375,302 acres

Boxes of citrus (Millions)

2004: 292 Million boxes
2022: 45.1 Million boxes

1 Box = ~90lbs oranges
Leave the Business
Leave the Business

Expected grove lifespan reduced from 30 to 20 years
Leave the Business

Expected grove lifespan reduced from 30 to 20 years

Young trees especially vulnerable
Leave the Business

Expected grove lifespan reduced from 30 to 20 years

Young trees especially vulnerable

Yields down even if trees survive
Leave the Business

Expected grove lifespan reduced from 30 to 20 years

Young trees especially vulnerable

Yields down even if trees survive

Decline from \(~8,000\) to \(~2,500\) citrus growers during HLB
Leave the Business

Expected grove lifespan reduced from 30 to 20 years
Young trees especially vulnerable
Yields down even if trees survive
Decline from ~8,000 to ~2,500 citrus growers during HLB
Dead/abandoned groves common sight
Budwood and Nursery Production

Must all be enclosed to prevent ACP entry and HLB infection
Budwood and Nursery Production

Must all be enclosed to prevent ACP entry and HLB infection

All propagation structures for budwood, nursery, seedling production enclosed to exclude insects
Budwood and Nursery Production

Must all be enclosed to prevent ACP entry and HLB infection

All propagation structures for budwood, nursery, seedling production enclosed to exclude insects

Double entryways with positive pressure
Fans, cooling units covered
Budwood and Nursery Production

Must all be enclosed to prevent ACP entry and HLB infection

All propagation structures for budwood, nursery, seedling production enclosed to exclude insects

Double entryways with positive pressure
Fans, cooling units covered

100ft perimeter with no citrus or related trees
Budwood and Nursery Production

Must all be enclosed to prevent ACP entry and HLB infection

All propagation structures for budwood, nursery, seedling production enclosed to exclude insects

Double entryways with positive pressure
Fans, cooling units covered

100ft perimeter with no citrus or related trees

Applies to all nurseries for own use, commercial, and dooryard production
Dense Planting, Nutrient Management
Dense Planting, Nutrient Management

Standard planting of 145 trees/acre (25x12ft) not profitable
Dense Planting, Nutrient Management

Standard planting of 145 trees/acre (25x12ft) not profitable.

Tested 22x9 and 18x8 spacing (220 and 303 trees/acre)
Both are profitable where standard spacing is not.
Dense Planting, Nutrient Management

Standard planting of 145 trees/acre (25x12ft) not profitable

Tested 22x9 and 18x8 spacing (220 and 303 trees/acre)
Both are profitable where standard spacing is not

Need to plant 1.5x to 2x the trees
Dense Planting, Nutrient Management

Standard planting of 145 trees/acre (25x12ft) not profitable

Tested 22x9 and 18x8 spacing (220 and 303 trees/acre)
Both are profitable where standard spacing is not

Need to plant 1.5x to 2x the trees

HLB: up to 80% root loss
Trees much less efficient taking up nutrients
More frequent, smaller applications of fertilizer are best
Dense Planting, Nutrient Management

Standard planting of 145 trees/acre (25x12ft) not profitable

Tested 22x9 and 18x8 spacing (220 and 303 trees/acre)
Both are profitable where standard spacing is not

Need to plant 1.5x to 2x the trees

HLB: up to 80% root loss
Trees much less efficient taking up nutrients
More frequent, smaller applications of fertilizer are best

Fertilize and irrigate frequently in small doses
Dense Planting, Nutrient Management

Standard planting of 145 trees/acre (25x12ft) not profitable

Tested 22x9 and 18x8 spacing (220 and 303 trees/acre)
Both are profitable where standard spacing is not

Need to plant 1.5x to 2x the trees

HLB: up to 80% root loss
Trees much less efficient taking up nutrients
More frequent, smaller applications of fertilizer are best

Fertilize and irrigate frequently in small doses

Remove infected (symptomatic) trees
Once trees no longer productive, or if very young
Intensive Chemical Management

Goal to reduce ACP populations as much as possible
Intensive Chemical Management

Goal to reduce ACP populations as much as possible
Try to protect young trees for about 4 years
Intensive Chemical Management

Goal to reduce ACP populations as much as possible
Try to protect young trees for about 4 years

Drenches of neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and cyantraniliprole on young non-bearing trees
Intensive Chemical Management

Goal to reduce ACP populations as much as possible
Try to protect young trees for about 4 years

Drenches of neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and cyantraniliprole on young non-bearing trees
Broad spectrum foliar applications for bearing trees
Organophosphates, pyrethroids: 3-6 per year
Intensive Chemical Management

Goal to reduce ACP populations as much as possible
Try to protect young trees for about 4 years

Drenches of neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and cyantraniliprole on young non-bearing trees
Broad spectrum foliar applications for bearing trees
 Organophosphates, pyrethroids: 3-6 per year

Recognized that this leads to increases in mites, other insect pests
Intensive Chemical Management

Goal to reduce ACP populations as much as possible
Try to protect young trees for about 4 years

Drenches of neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and cyantraniliprole on young non-bearing trees
Broad spectrum foliar applications for bearing trees
Organophosphates, pyrethroids: 3-6 per year

Recognized that this leads to increases in mites, other insect pests
Insecticide resistance is appearing (Imidacloprid and other neonicotinoids)
Individual Protective Covers (IPCs)
Individual Protective Covers (IPCs)

Cover young trees with mesh bag
Excludes ACP, prevents HLB
Individual Protective Covers (IPCs)

Cover young trees with mesh bag
Excludes ACP, prevents HLB

Trees infected young rarely fully productive
Can die in 1-2 yrs
IPCs stay on ~2 yrs
Individual Protective Covers (IPCs)

Cover young trees with mesh bag
Excludes ACP, prevents HLB

Trees infected young rarely fully productive
Can die in 1-2 yrs
IPCs stay on ~2 yrs

Regular scouting for infested young trees
At least 4 times a year, focused Oct-Mar.
Can treat like uncovered trees
Individual Protective Covers (IPCs)

Cover young trees with mesh bag
Excludes ACP, prevents HLB

Trees infected young rarely fully productive
Can die in 1-2 yrs
IPCs stay on ~2 yrs

Regular scouting for infested young trees
At least 4 times a year, focused Oct-Mar.
Can treat like uncovered trees

Still being studied, but also widely adopted
Citrus Under Protective Screening (CUPS)
Citrus Under Protective Screening (CUPS)

- Used for fresh fruit production
- Needed because of higher costs
Citrus Under Protective Screening (CUPS)

Used for fresh fruit production
Needed because of higher costs

Expensive: $1 per ft2
Replace screens every 7-10 yrs
More if hurricanes/tropical storms
Citrus Under Protective Screening (CUPS)

Used for fresh fruit production
Needed because of higher costs

Expensive: $1 per ft\(^2\)
Replace screens every 7-10 yrs
More if hurricanes/tropical storms

550 known acres in 2022
However, no centralized database, so probably more
Citrus Under Protective Screening (CUPS)

Used for fresh fruit production
Needed because of higher costs

Expensive: $1 per ft²
Replace screens every 7-10 yrs
More if hurricanes/tropical storms

550 known acres in 2022
However, no centralized database, so probably more

Not fool proof: found lizards inside
Citrus Under Protective Screening (CUPS)

Used for fresh fruit production
Needed because of higher costs

Expensive: $1 per ft²
Replace screens every 7-10 yrs
More if hurricanes/tropical storms

550 known acres in 2022
However, no centralized database, so probably more

Not fool proof: found lizards inside
However, effective if well maintained
CREC CUPS: 6 years with only 1 psyllid, 1 HLB tree